Total Synthesis of (-)-*N*-Methylwelwitindolinone B Isothiocyanate via a Chlorinative Oxabicycle Ring-Opening Strategy

Nicholas A. Weires, Evan D. Styduhar, Emma L. Baker, and Neil K. Garg

J. Am. Chem. Soc., 2014, 136 (42), pp 14710–14713

DOI: 10.1021/ja5087672

Tanja Krainz Wipf Group Current Literature 8th November, 2014

Family of Welwitindolinones

Welwitindolinones

Welwitindolinone A isonitrile

Welwitindolinone B isothiocyanate

R=H R=Me Me H Me R₂ WH O R₁

Welwitindolinone C isothiocyanate

R1=H, R2=NCS R1=Me, R2=NCS R1=Me, R2=NC Me H Me W Me

C3-Hydroxy-*N*-Mehtyl Welwitindolinone B isothiocyanate

R= NCS R= NC Me H Me SCN Whee

3-*epi*-Welwitindolinone B isothiocyanate

N-Methylwelwitindolinone D isonitrile

Fischerindoles

R1=NC, R2=Cl R1=NC, R2=H R1=NCS, R2=H

Hapalindoles

H R1=NC, R2=Cl R1=NC, R2=H R1=NCS, R2=Cl R1=NCS, R2=H

JACS, 1994, 116, 9935; J. Nat. Prod. 1999, 62, 569

Welwitindolinones: Isolation and Biological activity

SCN H Me SCN WHO Me

N-Methylwelwitindolinone C isothiocyanate

Isolation:

1994 and 1999 by Moore and co-workers from blue-green algae *Hapalosiphon* welwitschii and Westiella intricata

Biological activity:

- Insecticidal
- Antimycotic
- N-Methylwelwitindolinone C isothiocyanate has the ability to reverse P-glycoprotein-mediated multiple drug resistance (MDR) to a variety of anticancer drugs in human cancer cell lines.
- Lead therapeutic in drug resistant tumors

Mol. Pharmacol. 1995, 47, 241; Mol. Pharmacol. 1996, 49, 288

Completed Total Syntheses of Welwitindolinones

Welwitindolinone A isonitrile

Baran (JACS, 2005, 127, 15394-15396) Wood (JACS, 2006, 128, 1448-1449)

N-Methylwelwitindolinone D isonitrile

Rawal (JACS, 2013, 133, 5789-5801) Garg (ACIE, 2013, 12422-12425)

Garg (JACS, 2011, 133, 15797-15799)

Garg (JACS, 2012, 134, 1396-1399)

Garg (JACS, 2012, 134, 1396-1399)

Previous Work: Garg's Total Syntheses of (-)-*N*-Methylwelwitindolinone C Isothiocyanate

Ref 1: Chem. Pharm. Bull., 1994, 42, 1393-1398

Introducing vinyl chloride and oxindole moieties

Intermolecular functionalization methods including bridgehead enolate chemistry, Nitrene insertion reactions, and radical halogenations were unsuccessful.

Intramolecular Nitrene C-H insertion

Strategic Manipulation of a kinetic isotope effect

Total Synthesis of N-Methylwelwitindolinone C Isonitrile

Synthesis of oxidized Welwitindolinones

> Both oxidations occurred selectively to furnish single diastereomers

This work: Total Synthesis of (-)-N-Methylwelwitindolinone B Isothiocyanate

N-Methylwelwitindolinone B isothiocyanate

Problems:

- > Facile reduction of the terminal olefin
- > Formal migration of the vinyl group to C13 upon activation of the alcohol

This work: Total Synthesis of (-)-N-Methylwelwitindolinone B Isothiocyanate

Retrosynthetic Analysis

Synthetic Studies to Oxabicycle 32 and Chlorinative Oxabicycle Opening Studies

Chlorinative Oxabicycle Opening Studies

Single diasteroisomer

Nitrene Insertion Studies with C10 epimer

1. TESCI imidazole, DMF,rt

2. Cp₂TiMe₂,

PhMe, 60° 63% (over 2 st

63% (over 2 steps)

37 R=TES

1. HCI, EtOH, rt

2. Cl₃CC(O)NCO
CH₂Cl₂, 0°C to rt

 K_2CO_3 , MeOH quant. (over 2 steps)

38

Garg's End Game Strategy

- 1. Dess-Martin, NaHCO₃ CH₂Cl₂, rt
- 2. NaHMDS, Ph₃PMeBr THF, rt
- H Me Me Me Me 40
- 1. LiAID₄, THF -78°C to 0°C
- 2. $\text{Cl}_3\text{CC}(\text{O})\text{NCO}$ CH_2Cl_2 , 0°C to rt K_2CO_3 , MeOH

quant (over 2 steps)

AgOTf, PhI(OAc)₂ bathophenanthroline

MeCN, 50°C

55% yield + 10% RSM

- Me D CI H Me Me V'', Me V'', Me
- 1. Schwartz's reagent THF, rt
- Dess Martin NaHCO₃, CH₂Cl₂, rt 49% (over 2 steps)
- Me N Me Me Me Me Me

- 1. Burgess reagent PhH, THF, rt
- 2. Se, S₈, NEt₃, THF 65°C

54% (over 2 steps)

(-)-N-Methylwelwitindolinone B isothiocyanate

Conclusion

- ✓ First total synthesis of (-)-*N*-Methylwelwitindolinone B Isothiocyanate
- √ 15 steps from previously synthesised bicyclic precursor
- ✓ With this synthesis completed, all welwitindolinones containing the bicyclic [4.3.1]decane core are now accessible by synthetic chemistry